首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   690篇
  免费   50篇
  2023年   4篇
  2022年   7篇
  2021年   18篇
  2020年   11篇
  2019年   16篇
  2018年   22篇
  2017年   24篇
  2016年   26篇
  2015年   24篇
  2014年   34篇
  2013年   54篇
  2012年   50篇
  2011年   42篇
  2010年   36篇
  2009年   25篇
  2008年   38篇
  2007年   27篇
  2006年   36篇
  2005年   35篇
  2004年   27篇
  2003年   21篇
  2002年   16篇
  2001年   7篇
  2000年   13篇
  1999年   15篇
  1998年   9篇
  1997年   10篇
  1996年   5篇
  1995年   6篇
  1994年   2篇
  1993年   3篇
  1992年   8篇
  1991年   4篇
  1990年   5篇
  1989年   5篇
  1988年   4篇
  1987年   5篇
  1986年   4篇
  1985年   4篇
  1984年   2篇
  1983年   4篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1975年   3篇
  1974年   2篇
  1972年   2篇
  1971年   2篇
排序方式: 共有740条查询结果,搜索用时 15 毫秒
81.
Kissing hairpin interactions form when the loop residues of two hairpins have Watson-Crick complementarity. In a unimolecular context, kissing interactions are important for tertiary folding and pseudoknot formation, whereas in a bimolecular context, they provide a basis for molecular recognition. In some cases, kissing complexes can be a prelude to strand displacement reactions where the two hairpins resolve to form a stable extended intermolecular duplex. The kinetics and thermodynamics of kissing-complex formation and their subsequent strand-displacement reactions are poorly understood. Here, biophysical techniques including isothermal titration calorimetry, surface plasmon resonance, and single-molecule fluorescence have been employed to probe the factors that govern the stability of kissing complexes and their subsequent structural rearrangements. We show that the general understanding of RNA duplex formation can be extended to kissing complexes but that kissing complexes display an unusual level of stability relative to simple duplexes of the same sequence. These interactions form and break many times at room temperature before becoming committed to a slow, irreversible forward transition to the strand-displaced form. Furthermore, using smFRET we show that the primary difference between stable and labile kissing complexes is based almost completely on their off rates. Both stable and labile complexes form at the same rate within error, but less stable species dissociate rapidly, allowing us to understand how these complexes can help generate specificity along a folding pathway or during a gene regulation event.  相似文献   
82.
83.
This article examines the influence of nutritional status on the emergence of deciduous dentition in a cross-sectional sample of 510 rural Rajput children from the Jubbal and Kotkhai Tehsils, Shimla District, Himachal Pradesh, India. The nutritional status of each child was evaluated using Z-scores of height/supine length-for-age (HAZ), weight-for-age (WAZ), and weight-for-height (WHZ). The effects of sex and side on deciduous dental emergence were not statistically significant. Partial correlation indicates that the number of emerged teeth (T) was more strongly correlated with height than with other anthropometric variables. In most age groups, the stunted boys and girls (HAZ <-2) had fewer emerged teeth than nonstunted age peers (HAZ >-2). The mean T in underweight children was also less than that of the normal children, with a few exceptions. The stunted children have a significantly greater likelihood of delayed emergence of deciduous dentition. Measures of linear growth status are more closely related to dental development than measures of growth in mass. The findings indicate that even moderate undernutrition can delay deciduous tooth emergence.  相似文献   
84.
Alternative splicing of the human immunodeficiency virus type 1 (HIV-1) genomic RNA is necessary to produce the complete viral protein complement, and aberrations in the splicing pattern impair HIV-1 replication. Genome splicing in HIV-1 is tightly regulated by the dynamic assembly/disassembly of trans host factors with cis RNA control elements. The host protein, heterogeneous nuclear ribonucleoprotein (hnRNP) A1, regulates splicing at several highly conserved HIV-1 3′ splice sites by binding 5′-UAG-3′ elements embedded within regions containing RNA structure. The physical determinants of hnRNP A1 splice site recognition remain poorly defined in HIV-1, thus precluding a detailed understanding of the molecular basis of the splicing pattern. Here, the three-dimensional structure of the exon splicing silencer 3 (ESS3) from HIV-1 has been determined using NMR spectroscopy. ESS3 adopts a 27-nucleotide hairpin with a 10-bp A-form stem that contains a pH-sensitive A+C wobble pair. The seven-nucleotide hairpin loop contains the high-affinity hnRNP-A1-responsive 5′-UAGU-3′ element and a proximal 5′-GAU-3′ motif. The NMR structure shows that the heptaloop adopts a well-organized conformation stabilized primarily by base stacking interactions reminiscent of a U-turn. The apex of the loop is quasi-symmetric with UA dinucleotide steps from the 5′-GAU-3′ and 5′-UAGU-3′ motifs stacking on opposite sides of the hairpin. As a step towards understanding the binding mechanism, we performed calorimetric and NMR titrations of several hnRNP A1 subdomains into ESS3. The data show that the UP1 domain forms a high-affinity (Kd = 37.8 ± 1.1 nM) complex with ESS3 via site-specific interactions with the loop.  相似文献   
85.
Molecular variants of polymorphic drug metabolizing enzymes and drug transporters are attributed to differences in individual's therapeutic response and drug toxicity in different populations. We sought to determine the genotype and allele frequencies of polymorphisms for major phase II drug-metabolizing enzymes (TPMT, UGT1A1) and drug transporter (MDR1) in South Indians. Allelic variants of TPMT (*2,*3A,*3B,*3C & *8), UGT1A1 (TA)6>7 and MDR1 (2677G>T/A & 3435C>T) were evaluated in 450-608 healthy South Indian subjects. Genomic DNA was extracted by phenol-chloroform method and genotype was determined by PCR-RFLP, qRT-PCR, allele specific PCR, direct sequencing and SNaPshot techniques. The frequency distributions of TPMT, UGT1A1 and MDR1 gene polymorphisms were compared between the individual 4 South Indian populations viz., Tamilian, Kannadiga, Andhrite and Keralite. The combined frequency distribution of the South Indian populations together, was also compared with that of other major populations. The allele frequencies of TPMT*3C, UGT1A1 (TA)7, MDR1 2677T, 2677A and 3435T were 1.2, 39.8, 60.3, 3.7, and 61.6% respectively. The other variant alleles such as TPMT*2, *3A, *3B and *8 were not identified in the South Indian population. Sub-population analysis showed that the distribution of UGT1A1 (TA)6>7 and MDR1 allelic variants differed between the four ethnic groups. However, the frequencies of TPMT*3C allele were similar in the four South Indian populations. The distribution of TPMT, UGT1A1 and MDR1 gene polymorphisms of the South Indian population was significantly different from other populations.  相似文献   
86.
High density lipoprotein (HDL) particles are made up of lipid and protein constituents and apolipoprotein A-I (apoA-I) is a principal protein component that facilitates various biological activities of HDL particles. Increase in Ox-PL content of HDL particles makes them 'dysfunctional' and such modified HDL particles not only lose their athero-protective properties but also acquire pro-atherogenic and pro-inflammatory functions. The details of Ox-PL-induced alteration in the molecular properties of HDL particles are not clear. Paraoxonase 1 (PON1) is an HDL-associated enzyme that possesses anti-inflammatory and anti-atherogenic properties; and many of the athero-protective functions of HDL are attributed to the associated PON1. In this study we have characterized the physicochemical properties of reconstituted HDL (rHDL) particles containing varying amounts of Ox-PL and have compared their PON1 stimulation capacity. Our results show that increased Ox-PL content (a) modifies the physicochemical properties of the lipid domain of the rHDL particles, (b) decreases the stability and alters the conformation as well as orientation of apoA-I molecules on the rHDL particles, and (c) decreases the PON1 stimulation capacity of the rHDL particles. Our data indicate that the presence of Ox-PLs destabilizes the structure of the HDL particles and modifies their function.  相似文献   
87.
88.
Lichens are among the most sensitive biomonitors of ecosystem health and human induced disturbances. Terricolous lichens of Chopta–Tungnath (Garhwal, western Himalaya, India) were analysed for their ability to indicate habitat variability and disturbances induced by livestock grazing. Terricolous lichens were sampled from 12 sites, distributed across the three macrohabitats between 2,700 and 4,001 m, using 50 × 10 cm narrow frequency grids having five 10 × 10 cm sampling units. The terricolous lichen community of the area constituted, 20 species belonging to 10 genera, five families and four growth forms. Altitude and relative humidity were the major habitat factors found influencing the terricolous lichen community of the landscape. Fruticose and compound soil lichen growth forms were found indicative of habitat disturbance largely caused by grazing induced trampling. Terricolous lichen diversity of the area was delimited by grazing pressure at mid-altitudes (3,000–3,400 m) and by decreasing soil cover at higher altitudes (>3,400 m).  相似文献   
89.
Coastal salt marshes are highly sensitive wetland ecosystems that can sustain long-term impacts from anthropogenic events such as oil spills. In this study, we examined the microbial communities of a Gulf of Mexico coastal salt marsh during and after the influx of petroleum hydrocarbons following the Deepwater Horizon oil spill. Total hydrocarbon concentrations in salt marsh sediments were highest in June and July 2010 and decreased in September 2010. Coupled PhyloChip and GeoChip microarray analyses demonstrated that the microbial community structure and function of the extant salt marsh hydrocarbon-degrading microbial populations changed significantly during the study. The relative richness and abundance of phyla containing previously described hydrocarbon-degrading bacteria (Proteobacteria, Bacteroidetes, and Actinobacteria) increased in hydrocarbon-contaminated sediments and then decreased once hydrocarbons were below detection. Firmicutes, however, continued to increase in relative richness and abundance after hydrocarbon concentrations were below detection. Functional genes involved in hydrocarbon degradation were enriched in hydrocarbon-contaminated sediments then declined significantly (p<0.05) once hydrocarbon concentrations decreased. A greater decrease in hydrocarbon concentrations among marsh grass sediments compared to inlet sediments (lacking marsh grass) suggests that the marsh rhizosphere microbial communities could also be contributing to hydrocarbon degradation. The results of this study provide a comprehensive view of microbial community structural and functional dynamics within perturbed salt marsh ecosystems.  相似文献   
90.
R Majumdar  RR Dighe 《PloS one》2012,7(7):e40291
The mechanism by which the hinge regions of glycoprotein hormone receptors couple hormone binding to activation of downstream effecters is not clearly understood. In the present study, agonistic (311.62) and antagonistic (311.87) monoclonal antibodies (MAbs) directed against the TSH receptor extracellular domain were used to elucidate role of the hinge region in receptor activation. MAb 311.62 which identifies the LRR/Cb-2 junction (aa 265-275), increased the affinity of TSHR for the hormone while concomitantly decreasing its efficacy, whereas MAb 311.87 recognizing LRR 7-9 (aa 201-259) acted as a non-competitive inhibitor of Thyroid stimulating hormone (TSH) binding. Binding of MAbs was sensitive to the conformational changes caused by the activating and inactivating mutations and exhibited differential effects on hormone binding and response of these mutants. By studying the effects of these MAbs on truncation and chimeric mutants of thyroid stimulating hormone receptor (TSHR), this study confirms the tethered inverse agonistic role played by the hinge region and maps the interactions between TSHR hinge region and exoloops responsible for maintenance of the receptor in its basal state. Mechanistic studies on the antibody-receptor interactions suggest that MAb 311.87 is an allosteric insurmountable antagonist and inhibits initiation of the hormone induced conformational changes in the hinge region, whereas MAb 311.62 acts as a partial agonist that recognizes a conformational epitope critical for coupling of hormone binding to receptor activation. The hinge region, probably in close proximity with the α-subunit in the hormone-receptor complex, acts as a tunable switch between hormone binding and receptor activation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号